10年專注于英語國家留學生作業代寫,網課代修,網課Exam代考
數學Essay代寫_數學作業代寫_數學題代做_DueEssay論文代寫

數學Essay代寫_數學作業代寫_數學題代做

北美數學代寫:精英數學寫手,數學題代做,數學代考 math代寫/數學代寫/算法代寫/algorithm代寫:這是一個數學代寫,主要涉及非線性問題等基礎數學問題, UKxie 是一個專業留學生論文..

2957088488

數學Essay代寫_數學作業代寫_數學題代做

發布時間:2022-03-23 熱度:

北美數學代寫:精英數學寫手,數學題代做,數學代考

math代寫/數學代寫/算法代寫/algorithm代寫:這是一個數學代寫,主要涉及非線性問題等基礎數學問題,唯一網址:hdassignmenthelp.com是一個專業留學生論文代寫平臺,在您對自己論文沒有把握的時候,我們可以幫您完成高分論文,給您的順利結束學業增光添彩,如果您有需求可以直接聯系右邊的客服,為您解答疑惑。



1. nLRA Problem (40 points)
Recall the definition of a Lovesick Robot Automaton (LRA). A Lovesick Robot Automaton is a type of
machine which takes a finite string as input, and generates an infinite pattern. We think of the LRA
as starting at position 1 on an infinite tape and moving right in a sequence of steps, and at each step
it decides to either mark the current cell on the tape with a ♥ or to not mark anything, i.e. it leaves a
blank character, which we denote with “ ”. The LRA has the following characteristics:
• Just as in the case of a DFA, a LRA is a five tuple (Q, Σ, δ, q0, F). However, after a LRA has processed
the last character of the input string, it goes back to the first character. So a LRA processes the
string repeatedly in an infinite loop. Each step of the robot corresponds to a state transition.
• The set F is now called the set of marking states. At each step, if the new state is a marking state
then the robot marks the new cell with a ♥. Otherwise, the robot does not make a mark in this
position, i.e. it leaves it blank ( )
• It is only after processing the first symbol of the input that the LRA either creates a mark ♥ or
leaves a blank , depending on what state the LRA enters after processing this first symbol.
Define a New Lovesick Robot Automaton (nLRA) to be an LRA which can decide at each step which
direction to move on the infinite tape. In other words, the transition function is now defined as δ :
Q × Σ → Q × {L, R}. If δ(q, a) = (q
0
, R) then the robot moves right on the tape and leaves a ♥ if q
0
is a
marking state. Likewise, if δ(q, a) = (q
0
, L) then the robot moves left on the tape and leaves a ♥ if q
0
is
a marking state. (If the robot is at position 1 and tries to move left then it just stays at position 1.)
We will explore the question of using a Turing Machine to decide questions about nLRAs. To that end,
denote by hhRii an encoding of an nLRA R.
(a) (20 points) Rigorously prove the following new “pumping lemma” for nLRAs:
Lemma 1. For any nLRA M and any string s, there exist w, z ∈ {L, R}

such that the pattern of
directions taken by the robot when executing M(s) is of the form wzzzzz . . . .
(b) (20 points) Show the language
L = {(hhRii, s) | For all n ∈ N, R(s) eventually visits the n-th cell on the infinite tape}
is decidable.
2. Libra Machines (85 points)
In this problem, we define a Turing machine variant called a Libra Machine (LM). A Libra Machine has
a total of three tapes: in addition to its regular tape, it has two machine tapes. The LM can write to
the three tapes in the ordinary way, but it has an extra trick up its sleeve. At any given moment, the
LM can go into a special query state and perform a language equality query. Suppose an ordinary Turing
Machine representation hM1i is stored on the first machine tape of an LM T, and another ordinary Turing
Machine representation hM2i is stored on the second machine tape of T. If T enters the query state, then
immediately T learns whether L(M1) = L(M2). In particular, if L(M1) = L(M2), then T enters a special
state called the yes state without consuming any input or moving the tape. If L(M1) 6= L(M2) then T
enters another special state called the no state. We say that a language L ⊆ Σ

is Libra recognizable
(respectively, Libra decidable) if there exists an LM T recognizing (respectively, deciding) L.
Note: Throughout this problem, hMi denotes a description of an ordinary Turing machine.
Example: A Libra machine can easily decide the language {(hM1i,hM2i) | L(M1) = L(M2)}. The
machine simple writes hM1i to the first machine tape and hM2i to the second tape and enters the query
state, and accepts if it enters the yes state.
(a) (15 points). Show that the language
HALT = {(hMi, x) | M halts on input x}
is Libra decidable.
(b) (20 points). Show that the language
MINIMAL = {hMi | M is a minimal turing machine}
is Libra decidable. (This language is defined in Section 6.1 in Sipser.)
(c) (20 points). Show that there exists a language L which is not Libra recognizable.
Hint: Think about infinities.
(d) (30 points). Show that there exists a language L which is Libra recognizable but not Libra decidable.
3. Decidability and Recognizability (90 points)
Consider the following language:
DISAGREE = {(hM1i,hM2i) | there exists an x such that x ∈ L(M1) but x 6∈ L(M2)}
(a) (15 points). Show DISAGREE is undecidable.
(b) (15 points). Show DISAGREE is unrecognizable.
Now we define a machine called a fibonacci enumerator. A two-tape Turing Machine is a fibonacci
enumerator if it runs forever and for any fibonacci number n, the binary representation of n is eventually
written to the work tape.
Consider the following language:
FIB = {hMi | M is a fibonacci enumerator}
(c) (25 points). Is FIB recognizable? Prove or disprove.
Finally, consider the language
SMALLANDPICKY = {(hMi, x) | M is a minimal Turing machine where L(M) = {x}}
(d) (10 points). Show that the set
{hMi | there is some x such that (hMi, x) ∈ SMALLANDPICKY}
is infinite.
(e) (25 points). Show that SMALLANDPICKY is unrecognizable.
4. Language Properties (40 points) In this problem we study variants of Rice’s theorem.
(a) (20 points). Define a strong nontrivial property of languages to be a nontrivial property of languages
P where P(∅) = 1. Show that for any such P the language
LP = {hMi | P(L(M)) = 1}
is unrecognizable.
(b) (20 points). Define a 2-dimensional nontrivial property of languages to be a function P : P(Σ∗
) ×
P(Σ∗
) → {0, 1}, such that the following property holds:
(i) There exist Turing Machines M, Myes, Mno where P(L(M), L(Myes)) = 1 but P(L(M), L(Mno)) =
0.
Show that for any such P, the language
LP = {(hM1i,hM2i) | P(L(M1), L(M2)) = 1}
is undecidable.
(c) (40 points extra credit). Now consider a variant of the previous problem where (i) is replaced by
the following:
(i) There exist Turing Machines M1, M2, M0
1
, M0
2 where P(L(M1), L(M2)) = 1 but P(L(M0
1
), L(M0
2
)) =
0.
Show that it is still the case that for any such P, the language LP is undecidable.


關閉窗口
上一篇:理學essay代寫_數學essay代寫
下一篇:專業論文代寫指南_DueEssay高端數學論文作業代寫

相關閱讀

數學題代做,math代考,數學網課代考,北美數學作業代寫
數學題代做,math代考,數學網課代考,北美數學作業代寫

UKXIE 數學作業代寫,多年從英國、加拿、澳洲、數學課程輔導, 數學代考 ,數學題代做, math代考 ,數學代做,美國數學代寫, 留學生代寫 ,微積分代寫。 UKXIE 擁有...

數學作業代寫_數學代考_數學題代做
數學作業代寫_數學代考_數學題代做

數學essay代寫,數學網課代修,數學代考,各類數學作業代寫,留學生math assignment代寫, 數學題代做 ,math代考,數學網課代考,數學題代做。 數學作業代寫介紹 UKXIE 專注提供專...

理學essay代寫_數學essay代寫
理學essay代寫_數學essay代寫

美國essay代寫,加拿大essay代寫,澳洲essay代寫,哈佛代寫essay,賓夕法尼亞代寫essay 來自世界頂尖大學的專業本地寫手根據您的要求幫助您各種essay代寫修改。保證 100%原始和準...

?
代寫
微信

微信客服

微信客服:2957088488

山東濟南市歷下區三慶財富中心

qq

QQ客服

QQ聯系:2957088488

代写大神| 美国代写| 留学生代写|